Longevity is the most appropriate measure of health effects of radiation
By John Cameron,
Pr John R. Cameron completed his Ph.D.
from UW-Madison in 1952 in nuclear
physics and switched to medical
physics in1958. He was a founding
member of the AAPM and its tenth
president. He co-authored several books.
In 1981 he was the founding chair of the
Department of Medical Physics at
UW-Madison. Since his retirement
in1986 he has sought to educate the
public about radiation.
Pr John R. Cameron is a member of the Scientific Committee of the Association of Environmentalists For Nuclear Energy - EFN. He believes that moderate dose rate radiation is probably beneficial and that human research is necessary to determine the optimum dose rate.
It has been known for about a century that large doses of radiation (which are now very uncommon) increase the risk of cancer. This letter presents evidence that moderate dose rate radiation significantly increases longevity without an increase in cancer. I suggest that longevity is a more appropriate measure of health effects of radiation than cancer mortality. A double blind study of humans would be necessary, however, to determine the health effects of low dose radiation (1).
I believe the 100-year study of British radiologists (1897-1997) is
the most important study of health effects of moderate dose rate
radiation ever published. (2) It compared the death rates of British
radiologists from cancer, non-cancer and all causes to those of all
male non-radiologist physicians in England and Wales, hereafter
referred to as the controls. The study shows that radiologists who
joined a radiological society between 1897-1920 had 75% greater
cancer mortality than the controls. There is no doubt that the
significant cancer increase (P<0.001) was due to their high
radiation doses.
The increased radiation appeared to have had an important beneficial
effect on deaths from non-cancer that was not noticed at the time.
The 1897-1920 radiologists death rate from non-cancer was 14% lower
(P<0.05) than the controls. This reduced non-cancer death rate
cancelled out the increased death rate from cancer. The radiologists
deaths from all causes were slightly less than those of the controls.
Thus, the earliest radiologists' overall longevity as a group was not
reduced despite their high radiation doses and despite their
increased cancer.
The abstract of the article (2) concludes: "There was no evidence of
an effect of radiation on diseases other than cancer even in the
earliest radiologists, despite the fact that doses of the size
received by them have been associated with more than a doubling in
the death rate among the survivors of the Japanese atomic bombings."
I believe the authors overlooked the fact that the significant
decrease (p<0.05) in radiologists deaths from non-cancer can only
be explained as a reduction of deaths from diseases other than cancer
compared with the controls .
The article concludes with the true statement: "For non-cancer causes
of death there was not evidence of an increased risk in any group,
even among those registering before 1921." However, it does not
mention the 14% decrease (p<0.05) in deaths from non-cancer before
1921 and the 14% decrease (p<0.001) in deaths from non-cancer for
the 100 years as pointed out in my letter to the Editor. (3) A
similar study of U.S. radiologists suggests that their health was
better than other medical specialists after 1940. (4).
Present radiation protection limits for workers and the public are
based largely on cancer deaths of a-bomb survivors. The significant
increase in deaths from non-cancer of the a-bomb survivors at high
doses compared to the significant reduced deaths from non-cancer of
the radiologists indicates that a-bomb survivor data are not
appropriate for predicting longevity for radiation workers or the
public.
The longevity data from the British radiologists study indicate that
the dose limit recommended for radiation workers by the International
Commission for Radiological Health (ICRP) in 1934 of 0.2 r/day (about
50 rads/year) did not need to be lowered. The very high doses to the
earliest radiologists did not reduce their overall longevity as a
group. British radiologists who joined a society after 1920 also had
a 14% lower (p<0.001) death rate from non-cancer and an 8% lower
(p<0.01) death rate from all causes than the controls.
British radiologists who joined a radiological society after 1920
never had a statistically significant excess of cancer mortality
compared to the controls. This contradicts the present dogma of a
linear increase of cancer with dose. The abrupt decrease in cancer
deaths of the radiologists after 1920 suggests that x-ray induction
of cancer may have a threshold as suggested by two earlier studies.
Radium induced bone cancer of the dial painters had a threshold of
1,000 rads to the skeleton. (5) Lung cancer induction from
fluoroscopic exposures had a threshold of about 200 rads to the
lungs. (6)
The British radiologists death rate for the century from non-cancer
causes was 14% lower (P<0.001) than that of the controls. Their
death rate from all causes was 8% lower (P<0.01). Thus, is
moderate radiation exposure harmful?
The healthiest British radiologists were those who joined a
radiological society between 1955-1979. Their death rate from cancer
was 29% lower (not significant); from non-cancer was 36% lower
(p<0.001) and from all causes was 32% lower (p<0.001) than the
controls. Their longevity would be about 3 years longer than the
controls. The chance of this greater longevity being accidental is
less than one in 1,000.
In my opinion, the best epidemiological study of radiation workers
ever done is the DOE supported U.S. nuclear shipyard worker study
(1980-1988). (7) The 28,000 nuclear shipyard workers with the largest
cumulative doses had a death rate from all causes 24% lower
(p<10-16) than that of 32,000 age-matched and job-matched
unexposed shipyard workers. No other study of radiation workers had
the important advantage of having job-matched controls. The details
of this important study have still not been published. The DOE news
release about the study did not mention that the deaths from all
causes of the nuclear workers were 16 standard deviations lower than
the controls. (8) It does not seem realistic to me to suggest that
this great health improvement can be explained by selection bias as
suggested in a recent report. (9)
In summary, I believe that longevity is a better measure than cancer
mortality of the health effects of radiation. The above data strongly
support this belief. Is a low level of radiation therefore
potentially beneficial, rather than harmful?
April 10, 2003 Dr. Anthony Proto, Editor of the Am. J. of Radiology informed the author this article would be published in a future issue of RADIOLOGY
(Click here to view Powerpoint slides of the talk to the FL HPS chapter on 4/17/03 in St. Augustine Florida)
Please send comments & suggestions to [email protected]
References:
1. Cameron JR
Is radiation an essential trace energy? Physics and Society October
2001. Available at
http://www.aps.org/units/fps/oct01/a5oct01.html
2. Berrington A, Darby SC, Weiss HA, Doll R 100 years of observation on British radiologists: mortality from cancer and other causes 1897-1997. Br J Radiol. 2001, 74, 507-519.
3. Cameron JR Radiation increased the longevity of British radiologists. Br J Radiol 2002, 75:637-8.
4. Matanoski GM, Sternberg A, Elliott EA Does radiation exposure produce a protective effect among radiologists? Health Physics, 1987, 52, 637-643.
5. Evans RD Radium in man. Health Physics 1974, 27, 497-510.
6. Rossi HH, Zaider M Radiogenic lung cancer. The effects of low doses of low-LET radiation. Rad. and Env. Biophys. 1997, 36(2): 85.
7. Matanoski G. Health effects of low-level radiation in shipyard workers. Final report. 1991, 471 pp. Baltimore, MD, DOE DE-AC02-79 EV10095. National Technical Information Service, Springfield, Virginia.
8. U.S. Department of Energy (USDOE) Washington, D.C., Office of epidemiology & health surveillance Health Bulletin 91-3 September 1991. Available at http://dewey.tis.eh.doe.gov/health/epi/docs/hb91-3.pdf
9. NCRP Report No. 136 Evaluation of the Linear-Nonthreshold Dose-Response Model for Ionizing Radiation page 196. National Council for Radiation Protection and Measurement, Bethesda, MD, 2001.