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Energy and Heat

0

Heat has always been an issue for mankind

In 2008, the total world energy production
amounted to 12000 Mtoe

Approximately one third of it (4000 Mtoe) was used as heat.
50% of this heat was for residential homes, commercial businesses
and public services (hospitals, schools, universities, offices)

Total space heating and cooling demand ~ 20000 TWh
World District Heating and Cooling ~ 2500 TWh

The potential of DHC increase is very large
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District Heating

Percentage of citizens having access to district heating
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Source: Euroheat and Power, 2009

District Heating is developed in northern European countries
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District Heating

The Development of the District Heating Systems
in Stockholm County - Networks of Heating
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District Heating in large cities
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District Heating

.| network in Paris is the
| largest in France:

v 2 X 440 km

| v 5700 GWh

= v’ 25% of total heating
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District Cooling
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District Cooling networks in warm areas
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Recovery of Nuclear Heat

0

rgies altemnat

Nuclear Power Plant

- Primary circuit

Generstor [T ] secundary circuit
| ; 1/3 of the fission
. o | energy IS converted
— into electricity
. _3 —— 213 of the fission
e energy Is lost in heat
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Exergy

» Ambient temperature heat is of no use

» The Exergy concept allows to also valuate the

temperature at which the heat is produced.

E=H-Ty.S

Exergy of a quantity of heat Q

at a temperature T

—— E = Q.(1-

To

)

Case of 1300 MWe Nuclear Power Plant
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Exergy: Electrical Efficiency

Wi +Wep|—Ws
Qi

n=‘

» Wy, on the Low Pressure Turbine decreases with
Increasing temperature

Qout = Qi — Wi +Wpp,

T
Eout = (1-2
out Qout ( T )

» The output exergy increases with increasing temperature
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Exergy: Electrical Efficiency
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Thermodynamics: The Rankine cycle

Temperature (°C)
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Modify the low pressure turbine: outlet at 2 bars
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Thermodynamics: The secondary circuit
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Nuclear District Heating

Nuclear Power Plant ] Buildings
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Example of Substations

Prefabricated substations

The main benefits of prefabricated substations
Realiable installation at factory

Standardized system solutions

Small space requirement

Site installation time can be minimized

Easy to maintain

High degree of automation

Easy operation

< POYRY

Source: Janne Lavanti, POYRY,
Finland Oy Energy, May 2011
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Limits of Pre-fabricated Substafion !
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The Main Transport Line
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(may be used as a
In a Tunnel common utility)
In a Trench
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The Main Transport Line: Thermal Losses
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Total heat loss ~ 2% of the transported power!
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Friction Factor

The Main Transport Line: Hydraulics
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Loviisa 3 Nuclear Power Plant Project in Finland
PWR connection

Heat extraction from a Pressurized Water Reactor

TURBINE s

REACTOR STEAM GEERATGR

3 CONDENSER
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- DSTRICT HEATING PIPELINE

HEAT EXCHANGER

Source: Harri Tuomisto, FORTUM, Finland , October 2010

HEAT EXCHANGER  (HELSINKI) METROPOLITAN AREA
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Loviisa 3 Nuclear Power Plant Project in Finland

Loviisa 3 CHP — heat transport on a long distance

Heat transport in pipes

— Mounting in a rock tunnel, cross
section 30 m?

+ stable conditions
+ positive maintenance aspects

— Near surface installation
» |lower costs
+ environmentally more challenging

District heat transport system
* Distance over 75 km (Loviisa — eastern Helsinki)
— 2x @ 1200 mm pipes, PN25 bar, Q =4 - 5 m3/s
— 4 - 7 pumping stations
+ total pumping power needed tens of MWs
+ compensates for heat losses
— Control scheme
+ district heat water temperature or flow rate

— Heat accumulator needed, heat distribution to the local district heat
network via heat exchangers

Source: Harri Tuomisto, FORTUM, Finland , October 2010
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The Main Transport Line

Pressure drop along the pipe
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— Install pumping stations every ~ 20 km
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The Nogent-sur-Seine Power Plant

0

Two 1300 MWe reactors with cooling towers

H. Safa
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The Main Transport Line: An example

Nogent-sur-Seine
&0 Nuclear Power Plant
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H. Safa

Economics

Two main parameters
1. The Temperature T of the fluid

Electric Efficiency, Heat Losses

2. The Piping Size @
Pumping Power

Assumptions:

» Operation time: 1/3 cogeneration, 2/3 electric
» Value of 1 MW thermal = 50% of 1 MW electric
» 2 lines of 1500 MW capacity each

IAEA Consultant meeting, Vienna, 19-22 December 2011
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Economics: Optimal Temperature
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|E>A gain equivalent to 920 MWe (+70%) can be achieved !!
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Economics : Optimal Piping Size
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|E> A target of ~30 €/ MWh can be set for the recovered heat
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Main primary line parameters

eSS Main Transport Line Characteristics

Transported heat power 1523 |MW
Total line length 150  |km
Forward Temperature 120 |°C
Return Temperature 60 °C
Insulation Thermal Conductivity 0.05 |W/mK
Insulation thickness 300 |mm
Piping size 2000 |mm
Max. pressure 20 bars
Water flow 6.34 |m’/s
Total heat loss 323 MW
Hydraulic pressure drop -0.16  |bar/km
Total pumping power 43 MW
Cost of delivered MWh 29.8 |€/MWh

Single line should be doubled to get a capacity of 3000 MWth

H. Safa
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Economics: Balance

Implementation on Nogent-sur-Seine reactor
(1300 MWe)
150 km long main heat transport line

» Additional heat production of 9 TWh

Gain of +540 M€/year

» Reduction of electric production -1.8 TWhe

Loss of -180 M€/year

Total gain of +360 M€/year

H. Safa
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CO, emissions

CO, emissions from district heating in Paris

60% fossil fuels (gas boilers, coal, oil)
40% waste incineration

Average of 195 gCO,/kWh

Large reduction in CO, emissions

Avoid 1.7 Million tons of CO,/year

= Huge savings in CO, emissions

H. Safa IAEA Consultant meeting, Vienna, 19-22 December 2011
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Conclusions

cey  » The recovery of nuclear heat from present NPP
_ is technically feasible

» The primary heat transport line can be
designed with low thermal losses (a few percents)
even for long distances (> 100 km)

» Heat recovery enhances the plant efficiency and
provides a high energetic gain (+70%)

» The recovered heat is economically competitive

» Nuclear heat recovery allows large reduction in
CO, emissions

H. Safa IAEA Consultant meeting, Vienna, 19-22 December 2011
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The Sustainable Nuclear Energy Technology Platform
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Nuclear Cogeneration Industrial Initiative
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The NC2I Task Force

Mission:
€S .
—  NC2ITF shall comply with the SNETP mandate and shall launch a

- Nuclear Cogeneration Industrial Initiative (NC2l) and any other tools
required for successful prototype project in the 2020 time frame

Vision:

The NC2I vision is to unlock and use the potential of nuclear
cogeneration for considerable savings of fossil resources
in the short to medium term

NC2I shall thus develop, demonstrate and stimulate nuclear
cogeneration systems compatible with large-scale industry applications
and SET Plan targets

= Support cogeneration applications for all nuclear systems

= Extend cogeneration potential by accelerated HTR development
=> Initiate prototype project(s)

= Possibly prepare/participate in international industrial initiative(s)

Source: Sander De Groot, NRG, SNETP/NC2I, October 2011

H. Safa 31



